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Figure 3: Left: the dimensions of variation in the face
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Figure 4: Left: a surface plot of the error rate vs. VP and EX (the numbers are listed in Table 1). Middle:
error rate vs. VP, averaged over the three different values of EX. Right: error rate vs. EX, averaged over the
five different values of VP. The mean error rate over the five viewing positions (spanning a range of £34° in
orientation), and the three expressions was 0.3074. The error bars correspond to £1 standard error of the mean

computed over the 18 test faces.

perience with similar objects (i.e., other faces seen
in a variety of conditions) serves to guide the system
in its treatment of the stimulus. Since the introduc-
tion of this concept of so-called class-based processing
[10, 14, 2, 11], several applications to face recognition
and related problems have been published [17, 4, 3].
Typically, these methods rely on the establishment
of a dense correspondence field, before any recogni-
tion or generalization is attempted. Approaches that
gave up this constraint showed a certain promise [9],
but could not compete, performance-wise, either with
the human subjects, or with the more sophisticated
correspondence-based methods.

In the present work, the employment of a front end
containing Gabor filters at multiple scales and orienta-
tions [8] served to reduce the need for detailed pixel-
by-pixel correspondence, and allowed the viewspace
interpolation method [5] to be utilized to its full po-
tential. We conjecture that a further improvement
in the front-end measurement stage, combined with
a more advanced approach to interpolation (which
is currently done by inverse-distance weighting), will
close most of the remaining gap between the system’s
3-way discrimination error (8%) and the error exhib-
ited by human subjects (3%).
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