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Abstract

Work is currently underway to devise learning methods which are bet-

ter able to transfer knowledge from one task to another. The process of

knowledge transfer is usually viewed as logically separate from the induc-

tive procedures of ordinary learning. However, this paper argues that this

`seperatist' view leads to a number of conceptual di�culties. It o�ers a

task analysis which situates the transfer process inside a generalised in-

ductive protocol. It argues that transfer should be viewed as a subprocess

within induction and not as an independent procedure for transporting

knowledge between learning trials.

1 Introduction

Where learning tasks are closely related, it seems reasonable to expect a learner

to be able to improve its performance on a particular learning task by reapplying

knowledge gained on some previous learning task. The learner should, we feel,

be able to transfer knowledge from one task to another. Unfortunately, popular



are exactly reverse of what we want: the acquisition of new knowledge appears

to catastrophically interfere with existing knowledge [4].

Many workers are engaged in the attempt to realise the bene�ts of knowledge

tranfer within learning [cf. 5, 6, 7, 8].
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However, there seems to be some residual

fuzziness in our thinking about the relationship between transfer and learning.

In particular, di�erent assumptions are made about the way in which these two

processes interact.

In some cases the role of learning is simply rote storage (i.e., memorisation) of

presented data. However, in most cases learning involves going beyond presented

data, i.e., it involves some form of induction. Where the goal of learning is some

form of behaviour then producing high performance means doing the right thing

at the right time. But we can, of course, always see this as a kind of induction

simply by treating the motor commands to be learned as the `target outputs'

in a conventional induction problem.

If we accept the idea that learning can usually be viewed as some sort of

inductive process, we have to ask how transfer �ts in. A common view is that

transfer is an operation which takes place between learning tasks. This suggests

that the process is somehow independent and separated from normal inductive

activity. On the other hand, transfer seems pointless unless it contributes in

some way to learning (i.e., inductive) performance. This seems to imply that

we should view transfer as being a part of an higher-level inductive process.

There are thus conceptual problems to deal with whether we treat transfer

as separate from induction or as closely integrated with it. To try to resolve

these I present a task analysis of induction [9]. This di�ers from some theoretical

treatments of learning (e.g., COLT treatments such as [10]) since it concentrates

exclusively on properties of the induction problem and ignores possible solutions

altogether. Interestingly, it leads to a view of induction which gives a clear role

to a transfer process
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and also allows us to formulate a criterion for deciding

when and if such transfer has occurred. The paper thus provides theoretical

ammunition for those who take the view that transfer should be treated as an

aspect of induction rather than a separate



2 A task analysis of induction

Imagine we have a body of data D, as shown in Table 1. Each datum in D (i.e.,

each row) is made up of the values of variables x

1

; x

2

; x

3

, x

4

and x

5

. One of

the values of x

3

is missing (see the `?' in the x

3

column). Can we use the other

data to predict this missing value? In other words, can we empirically induce

the missing value from the data which are provided?

x

1

x

2

x

3

x

4

x

5

c d f a b

a b h d b

e c h d e

c b f a e

a c f d e

c c ? a e

b c f a e

b d h d e

e d f a c

a c h d c

c d h a c

Table 1: Sample induction problem.

If we observe that every possible value of the relevant variable has the same

probability then we clearly cannot make any prediction at all. If all values do

not have the same probability then we will rationally predict the missing value

to be the one which has the highest observed probability. However, there are

several ways in which we can work out `observed probabilities'. First, we can

look at the unconditional probability of seeing a particular value v of x

i

.

P (x

i

= v)

In the present case this is not productive since both possible values of x
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have the same unconditional probability. This is just the chance value of 0.5,

i.e.,

P (x

i

= v) =

1

jV j

where V is the set of all possible values of x

i

.

Second, we can look at the probability of seeing a particular value conditional

on explicit instantiations of the other values, i.e.,

P (x

i

= v

a

jx

j

= v

b

:::)
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where v

a

and v





practice it may be hard to allocate a particular method to a particular category.

A small number of cases can be conclusively classi�ed within the scheme.

The ID3 method [16], now more often used in its updated manifestation as C4.5

[17] is a case in point. ID3 takes a training set of sample input/output pairs

from an input/output mapping, and constructs a decision tree (for generating

outputs) by recursively partitioning the training set until every pair in a given

partition has the same output value.

At each stage of the process, a new partitioning is constructed by dividing

up the cases in an existing partition according to which value they have on

the variable whose values are most strongly associated (within the partition)

with speci�c output values. This has the e�ect of maximising the output-value

uniformity of new partitions and thus minimising (subject to horizon e�ects)



and obvious role to knowledge transfer. Arguably, it requires that transfer play

a role. Recall that exploitation of relational e�ects involves the identi�cation

of relationships in the data. Since in general the space of possible relationships

is in�nite this identi�cation necessarily involves a bias. A learner seeking to

exploit relationships in the data must always have some particular relationships

`in mind.' Thus the learner uses assumptions regarding the relevance or salience

of relationships. These assumptions constitute `knowledge' which, if it is justi-

�ed at all, must be justi�ed in terms of prior, relevant experience. Relational

learning, then, is either unjusti�ed or based on knowledge transfer.

The implication is worth spelling out. A well justi�ed, relational learning

process applied to a sequence tasks necessarily engages in knowledge transfer.

The process can be viewed in terms of the acquisition of a suitable bias. This



learning. The proposed model thus o�ers some real bene�ts for the achievement

of a better understanding of transfer. Whether it has any worth for those

engaged in the application of transfer in practical contexts remains to be seen.
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