
Cellular Encoding for Interactive Evolutionary Robotics

Fr�ed�eric Gruau and Kameel Quatramaran

University of Sussex,

School of Cognitive and Computing Sciences,

Evolutionary and Adaptive SYstems Group (EASY)

Falmer, Brighton, BN1 9QH UK

http://www.cogs.susx.ac.uk/

and

Centrum Voor Wiskunde en Informatica

Department of Algorithms and Architecture

Kruislaan 413 SJ Amsterdam

gruau@cwi.nl, http://www.cwi.nl/~ gruau/gruau/gruau.html

Abstract

This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Arti�cial

Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using

a cellular developmental process called cellular encoding. In a previous work similar experiments have

been carried on successfully on a simulated robot. They took however around 1,000,000 di�erent ANN

evaluations. In this work the �tness is determined on a real robot, and no more than a few hundreds

evaluations can be performed. Various ideas were implemented so as to decrease the required number of

evaluations from 1,000,000 to 200. First we used cell cloning and link typing. Second we did as many

things as possible interactively: interactive problem decomposition, interactive syntactic constraints,

interactive �tness. More precisely: 1- A modular design was chosen where a controller for an individual

leg, with a precise neuronal interface was developed. 2- Syntactic constraints were used to promoting

useful building blocs and impose an 8-fold symmetry. 3- We determine the �tness interactively by

hand. We can reward features that would otherwise be very di�cult to locate automatically. Interactive

evolutionary robotics turns out to be quite successful, in the �rst bug-free run a global locomotion

controller that is faster than a programmed controller could be evolved.

1 Introduction

1.1 The motivation for Interactive Evolutionary Algorithm

In [3] Dave Cli�, Inman Harvey and Phil Husbands from the university of Sussex lay down a chart for

the development of cognitive architectures, or control systems, for situated autonomous agent. They claim

that the design by hand of control systems capable of complex sensorimotor processing is likely to become

prohibitively di�cult as the complexity increases, and they advocate the use of Evolutionary Algorithm (EA)

to evolve recurrent dynamic neural networks as a potentially e�cient engineering method. Our goal is to try

to present a concrete proof of this claim by showing an example of big (> 16 units) control system generated

using EA. The di�erence between our work and what we call the \Sussex" approach is that we consider EAs

as only one element of the ANN design process. An engineering method is something which is used to help

problem solving, that may be combined with any additional symbolic knowledge one can have about a given

problem. We would never expect EAs to do everything from scratch. Our view is that EA should be used
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interactively in the process of ANN design, but not as a magic wand that will solve all the problems. In

contrast with this point of view, Cli�, Harvey and Husband seem to rely more on EAs. In [3] they use a

direct coding of the ANN. They �nd ANN without particular regularities, although they acknowledge the

fact that a coding which could generate repeated structure would be more appropriate. The advantage of

the Sussex approach is that it is pure
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Figure 1: The OCT1 8-legged robot

The paper presents what is cellular encoding, cell cloning and link typing, how we use syntactic con-

straints, experiments done with only one leg, and then with all the legs. Automatically generated drawing

represent di�erent ANN that were found at di�erent stages of the evolution. We discuss the behavior of the

robot, and try to explain it based on an analysis on the architecture, whenever possible. The description
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combined. All the links are duplicated, and the two child cells are interconnected with two links, one for each

directions. This division can generate completely connected sub-ANNs. The CPO division (CoPy Output)

is a sequential division, plus the output links are duplicated in both child cells. Similarly, the CPI division

(CoPy Input) is a sequential division, plus the input links are duplicated. Before describing the instructions

used to modify cell registers it is useful to describe how an ANN unit performs a computation. The default

value of the weights is 1, and the bias is 0. The default transfer function is the identity. Each neuron

computes the weighted sum of its inputs, applies the transfer function and obtain s and updates the activity

a using the equation a = a + (s � a)=� where � is the time constant of the neuron. See the �gures 7 11

and 13 for examples of neural networks. The ANNs computation is performed with integers; the activity is

coded using 12 bits so that 4096 corresponds to activity 1. The instruction SBIAS x sets the bias to x=4096.

The instruction DELTAT sets the time constant of the neuron. SACT sets the initial activity of the neuron.

The instruction STEP (resp LINEAR) sets the transfer function to the clipped linear function between �1

and +1 (resp to the identity function). The instruction PI sets the sigmoid to multiply all its input together.

The WEIGHT instruction is used to modify link registers. It has k integer parameters, each one specifying

a real number in 
oating point notation: the real is equal to the integer between -255 and 256 divided by

256. The parameters are used to set the k weights of the �rst input links. If a neuron happens to have more

than k input links, the weights of the supernumerary input links will be set by default to the value 256 (i.e.,

256

256

= 1).

The cellular code is a grammar-tree with nodes labeled by names of graph transformations. Each cell

carries a duplicate copy of the grammar tree and has an internal register called a reading head that points

to a particular position of the grammar tree. At each step of development, each cell executes the graph

transformation pointed to by its reading head and then advances the reading head to the left or to the right

subtree. After cells terminate development they lose their reading-heads and become neurons.

The order in which cells execute graph transformations is determined as follows: once a cell has executed

its graph transformation, it enters a First In First Out (FIFO) queue. The next cell to execute is the head

of the FIFO queue. If the cell divides, the child which reads the left subtree enters the FIFO queue �rst.

This order of execution tries to model what would happen if cells were active in parallel. It ensures that a

cell cannot be active twice while another cell has not been active at all. The WAIT instruction makes a cell

wait for a speci�ed number of steps, and makes it possible to also encode a particular order of execution.

We also used the control program symbol PROGN. The program symbol PROGN has an arbitrary number

of subtrees, and all the subtrees are executed one after the other, starting from the subtree number one.

Consider a control problem where the number of control variables is n and the number of sensors is p.

We want to solve this control problem using an ANN with p input units and n output units. There are

two possibilities to generate those i/o units. The �rst method is to impose the i/o units using appropriate

syntactic constraints. At the beginning of the development the initial graph of cells consists of p input units

connected to a reading cell which is connected to n output units. The input and output units do not read

any code, they are �xed during all the development. In e�ective these cells are pointers or place-holders

for the inputs and outputs. The initial reading cell reads at the root of the grammar tree. It will divide

according to what it reads and generate all the cells that will eventually generate the �nal decoded ANN.

The second method that we often prefer to use, is to have the EA �nd itself the right number of i/o units.

The development starts with a single cell connected to the input pointer cell and the output pointer cell.

At the end of the development, the input (resp. output) units are those which are connected to the input

(resp. output) pointer cell. We let the evolutionary algorithm �nd the right number of input and output

unit, by putting a term in the �tness to reward the network which have a correct number of i/o units. The

problem with the �rst method is that we can easily generate an ANN where all the output units output the

same signals, and all the inputs are just systematically summed in a weighted sum. The second method

works usually better, because the EA is forced to generate a speci�c cellular code for each i/o unit, that will

specify how it is to be connected to the rest of the ANN, and with which weights. To implement the second

method we will use the instruction BLOC which blocs the development of a cell until all its input neurons

are neurons, and the instruction TESTIO which compares the number of inputs to a speci�ed integer value,

and sets a 
ag accordingly. The 
ag is later used to compute the �tness.

Last, the instruction CYC is used to add a recurrent link to a unit, from the output site to the input site.

That unit can then perform other divisions, duplicate the recurrent link, and generates recurrent connections

everywhere.
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3 Enhancement of Cellular Encoding

We had to enhance cellular encoding with cloning division, and the use of types. We also implemented

another way to obtain recurrent links. All these new elements are reported in this section.

The cloning operation is really easy to implement, it is done by encapsulating a division instruction into

a PROGN instruction. After the division, the two child cells only modify some registers and cut some links,

then they simply go to execute the next instruction of the PROGN, and since they both execute the same
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<nn>[0..8];

<axiom> ::= <nn>

<nn> ::= ( PAR(<nn>)(<nn>) )

| ( CPO(<nn>)(<nn>) )

| ( SEQ (<nn>)(<nn>) )

| ( <attribute> )

<attribute> ::=

(PROGN : set[0..4] of
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<nn>[6..20];

begin

<axiom> ::= (LABEL

(SEQ (WAIT) (PAR

(<nn>)

(PROGN

(PAR)

(PAR(PAR(PAR(WAIT)(WAIT))(WAIT))(PAR(WAIT)(PAR(WAIT)(PAR(WAIT)(WAIT)))) ) ) ) ) )

<nn> ::= (SEQ(<nn>)(<nn>))

| (PAR(<nn>)(<nn>))

| (SHARI1(<nn>)(<nn>))

| (CPI(<nn>)(<nn>))

| (CPO(<nn>)(<nn>))

| (FULL(<nn>)(<nn>))

| (<tunit>)

| (<sunit>)

<tunit> ::= (PROGN (STEP)

(PROGN : set[1..3] of

( DELTAT
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SEQ (PROGN(STEP) (DELTAT(1))) (CPI (SEQ (PROGN(LINEAR)(WEIGHT(-693 )

(-1024 )(360 )(-252 )(-300 )(-984 )(-849 )(610 ))(SBIAS(3497 )))

(CPO (PROGN(STEP)(SACT(3458 ))) (PROGN(STEP)(DELTAT(39 ))) ) ) (PAR

(PROGN(LINEAR)(WEIGHT(-693 )(-1024 )(360 )(-252 )(-300 )(-984 )(-706 )

(796 ))(SBIAS(1864 ))) (PROGN(LINEAR)(WEIGHT(-914 )(40 )(736 )(-622 )

(-1024 )(-984 )(-706 )(610 ))(SBIAS(-2321 ))) ) )

Figure 6: The genetic code of the Champion leg controller
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<axiom>::=(LABEL(SEQ

(SEQ

(PAR(<command>)(<command>))

(PROGN

(WAIT(4)) (CTYPEI(-1)) (RESTRICTI(0)(1)) (STYPEI(0)) (CTYPEI(-1))

(STYPEI(1)) (CTYPEO(-1)) (STYPEO(0))

(<evolved>) ) )

(PROGN

(BLOC)

(TESTIO8)

(SHARI (JMP12) (SHARI (JMP12) (SHARI (JMP12) (SHARI (JMP12) (PROGN (SWITCH) (SHARI (JMP12)

(PROGN (SWITCH) (SHARI (JMP12) (PROGN (SWITCH) (SHARI (JMP12) (JMP12)

(1) )) (1) )) (1) )) (1) ) (1) ) (1) ) (1) ) ) ))

Figure 8: Syntactic constraint specifying the general structure

6 The locomotion controller

6.1 The Challenge

We have previously evolved ANN for a simulated 6-legged robot, see [6]. We had a powerful parallel machine,

an IPSC860 with up to 32 processors. We needed 1,000,000 of ANNs to �nd an ANN solution to the problem.

In this study, one ANN takes a few minutes to assess the �tness, because the �tness is manually given, and

it takes some time to see how interesting the controller is. One time we even spent an hour trying to �gure

out whether the robot was turning or going straight, because of the noise that was not clear. The challenge

of this study was to help the EA so as to be able to more e�ciently search the genetic space and solve the

problem with only a few hundreds of evaluations instead of one million.

6.2 General setting

There are some settings which were constant over the successful run 2, and run 4, and we report them

here. The way we give the �tness was highly subjective, and changed during the run depending on how
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7 Log of the experimental runs

We did only �ve run, and we are proud of it. That is a proof that the method works well, it doesn't need

weeks of parameter tuning. That's useful because one run is about two days of work. So we report the �ve

runs, even if only one of them was really success-full, and the other were merely used to debug our syntactic

constraints.

7.1 Analysis of run 0 and run 1

The �rst two runs were done with only seven legs, because a plastic gear on the eighth leg had burned, the

robot had stubbornly tried to run into an obstacle for 30 seconds. As a result, ANNs were evolved that

could made the robot walk with only seven legs. Run 0 brought an approximative solution to the problem.

But after hours of breeding we input accidentally a �tness of 23, which had the e�ect to stop the EA, the

success predicate being that the �tness is greater than 1. Run 1 also gave a not so bad quadripod, as far as

we can remember, but we realized there was a bug in the way we used the link types which were not used

at all. Instead of selecting a link and then setting the type we were �rst setting and then selecting, which

amounts to a null operation. We had simply exchanged the two alleles. When we found out the bug, we

were really surprised that we got a solution without types, but we think that's an interesting feature of EAs,

even if your program is bugged, the EA will take care of it!.

7.2 Syntactic Constraints used in the second run

The syntactic constraints used for the second run are reported in 10. The core of the controller is developed

by the cell executing the non-terminal
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<clone> [3..3];

<nn>
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get a �tness like 0.001. One of them produced an oscillation on four legs. During the next two generations,

we concentrated on evolving oscillations on as many legs as possible, giving �tnesses between 0.01 and 0.02,

depending on how many legs were oscillating, and how good was the period and the duration of respectively

the return stroke and the power stroke. At generation 3, we started to have individuals with a little bit of

coordination between the legs. We watched an embryo of wavewalk which very soon vanished because the

leg went out of synchrony. The coupling was to weak. The ANN is represented in �gure 11 on the second

picture, you can see that it is very sparsely connected. The next ANN at generation 4 generated an embryo

of quadripod. Four legs were moved forward, then four other legs, then the 8 legs were moved backward.

At generation 6 we got an ANN made of four completely separated sub-ANNs each one was controlling two

legs, due to a di�erent initial setting of the activities, the di�erence of phase was correct at the beginning,

and we obtained perfect quadripod, but after 2 minutes, the movement decreased in amplitude, four legs

come to a complete stop, and then the four other legs. Generation 7 gave an almost good quadripod, the

phase between the two pairs of four legs was not yet correct. The ANN is probably a mutation of the guy

at generation 3, because the architecture is very similar. Generation 8 gave a slow but safe quadripod walk.

The coupling between the four sub-ANNs is strong enough to keep the delay in the phase of the oscillators.

Only the frequency needs to be improved, because that's really too slow. Generation (ftea9]TJ
247.6cthat's).7(to)-999349(as)-1399-guy
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<evolved> ::= ( PROGN(<clone>)(<clone>)(<clone>)(<nn>))

<clone>::= (FULL(<opi>)(<opo>))

<opo> ::= (PROGN (<op>) (<settype>) (WAIT (integer[0..4])) )

<opi> ::= (PROGN(<op>)(WAIT (integer[14..18])))

<op> ::= (PROGN

( PROGN: set[0..4] of

(PROGN: list[1..2] of (PROGN(CTYPEI (2) )(<cuti>)) )

(PROGN: list[1..2] of (PROGN(CTYPEI (3) )(<cuti>)) )

(PROGN: list[1..2] of (PROGN(CTYPEI (4) )(<cuti>)) )

(PROGN: list[1..2] of (PROGN(CTYPEI (5) )(<cuti>)) ) )

( PROGN: set[0..4] of

(PROGN: list[1..2] of (PROGN(CTYPEO (2) )(<cuto>)) )

(PROGN: list[1..2] of (PROGN(CTYPEO (3) )(<cuto>)) )

(PROGN: list[1..2] of
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LABEL(SEQ(SEQ(PAR(PROGN(WAIT(200 ))(DELTAT(1 ))(SBIAS(0 ))(PROGN(CTYPEO(0 ))

(SWEIGHTO(318 )(319 )(128 )(148 )(485 )(228 )(154 )(49 )(333 )(7 )(357 )(327 )

(314 )(444 )(171 )(448 )))(PROGN(CTYPEO(1 ))(SWEIGHTO(268 )(185 )(424 )(113 )

(54 )(357 )(316 )(110 )(259 )(102 )(90 )(43 )(299 )(367 )(477 )(78 )))(LINEAR)

)(PROGN(WAIT(200 ))(DELTAT(1 ))(SBIAS(0 ))(PROGN(CTYPEO(0 ))(SWEIGHTO(453 )

(461 )(82 )(56 )(283 )(111 )(385 )(43 )(409 )(312 )(391 )(210 )(491 )(347 )

(171 )(238 )))(PROGN(CTYPEO(1 ))(SWEIGHTO(67 )(403 )(483 )(458 )(104 )(219 )

(505 )(323 )(234 )(94 )(291 )(330 )(154 )(198 )(355 )(324 )))(LINEAR)))

(PROGN(WAIT(4 ))(CTYPEI(-1 ))(RESTRICTI(0 )(1 ))(STYPEI(0 ))(CTYPEI(-1 ))
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7.6 Analysis of the fourth run

A selection of the champions of this run are reported in �gure 13. We deleted systematicaly ANNs that do

not have the right number of inputs, or produced no movement at all, as in the second run. We represent at

generation 0 a guy which produced oscillation on one leg. At generation one, we had an individual that has

a correct oscillation on all the legs. That guy has a quite simple 16 neuron controller made of 8 oscillator

neurons with a recurrent connection, and 8 neurons that implement a weak coupling. The oscillators loose

synchronisation. In generation 1, we had an ANN that produced oscillation, and coupling between the two

sides but not within one side. That means that the two front legs for example, or the two right legs are

synchronous, but not the left front leg with the left rear leg.





22

May be the most unexpected thing out of this work, is that the breeding is worth its pain. We are not

sure that an automatic �tness evaluation that would have just measured the distance walked by the robot

would had been successful, even in one week of simulation. There are some precise facts that support this

view. First, right at the initial generation, we often got an individual which was just randomly moving its

legs, but still managed to get forward quite a bit, using this trick. This is because the random signal has

to go through the leg controller and the leg is up when it goes forward and down when it go backward.

Using automatic �tness, the guy would have just dominate all the population right at generation 1, and all

potentially interesting building blocks would have been lost. With interactive �tness we just systematically

eradicate this noisy and useless individual. When we say noisy, it really do much more noise than all the

others, because it moves all the time by the maximum allowable distance. So after a while, we push the kill

button as soon as we hear the noise, kill, kill, kill, that gives an (un-healthy?) feeling of power. Second,

there are some very nice features which do not result at all in making the robot go forward. We are pretty

happy if we see at generation 1, a guy which move periodically a leg in the air, because that means that

somewhere there is an oscillatory sub-structure that we would like to see spreading. Typically, we spend the

�rst generations tracking oscillatory behavior, and tuning the frequency, we then rewards individuals who

get the signal on all the height legs, and last, we evolve coupling between the legs, with the right phase delay.

That's a pretty simple strategy to implement when breeding on line, but that would be di�cult to program.

In short, we developed in this work a new paradigm for using Evolutionary Computation in an interactive

way. Syntactic Constraints provide a prior probability (machine learning terminology) on the distribution

of ANNs. Modular decomposition allow to replace one big problem by two simpler problems, Interactive

�tness evaluation can steer the EA towards the solution.

Our future direction will be to evolve a locomotion controller with three command neurons: one for

forward/backward, one for right/left and one for the walking speed. In order to do that, we need to enhance

our method so has to be able to optimize di�erent �tnesses with di�erent populations, and then build one

behavior out of two behavior separately evolved. In the case of turning, or speed controling things can be

stated more precisely. We thing that turning as well as varying speed is only a matter of being able to govern

the frequency of the oscillators. Typically we would like to evolve separately an oscillator whose frequency

can be tuned using an input neuron, and then recombining it with the locomotion controller evolved in this

paper. The way how to successfully operate recombination is still an open subject of research.
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