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ABSTRACT

We discuss recent results from our ongoing research

concerning the application of arti�cial evolution tech-

niques (i.e. an extended form of genetic algorithm) to

the problem of developing \neural" network controllers

for visually guided robots. The robot is a small au-

tonomous vehicle with extremely low-resolution vision,

employing visual sensors which could readily be con-

structed from discrete analog components. In addition

to visual sensing, the robot is equipped with a small

number of mechanical tactile sensors. Activity from

the sensors is fed to a recurrent dynamical arti�cial

\neural" network, which acts as the robot controller,

providing signals to motors governing the robot's mo-

tion.

Rather than designing the control networks, we use

a genetic algorithm which operates on encoded con-

troller architectures. The controller architecture spec-

i�es the network connectivity, the number of \neural"

processing units in the network, and factors governing

the speci�cation of the visual sensors. That is, the con-

trol network and the sensing morphology are evolved

concurrently. A large number of network designs are

randomly generated, and then simulated to evaluate

their ability to produce useful behaviours in the robot.

After all the designs have been evaluated, the encod-

ings for the more successful architectures are \inter-

bred" using techniques inspired by biological studies

of evolution via mutation and recombination; thereby

producing a new collection of network designs. If this

process is repeated for a su�cient number of iterations,

useful network architectures can emerge.

Prior to presentation of new results, this paper sum-

marizes our rationale and past work, which has demon-

strated that visually-guided control networks can arise

without any explicit speci�cation that visual process-

ing should be employed: the evolutionary process op-

portunistically makes use of visual information if it is

available.



the fundamental need for reasoning and represen-

tation within intelligent systems.

Further to this aim, we are attempting to develop

highly automated techniques for the generation of spec-

i�cations of `cognitive' control architectures for simple

visually guided robots, where `control architecture' is

taken to include speci�cations for the sensors (and,

in principle, the actuators) of the robot. We view

automation as necessary because the types of con-

trol architecture required are likely to be highly com-

plex, with many (often indirect) interactions between

constituent parts, and consequently the complexity of

purely manual design of such architectures is likely to

scale badly as further layers or modules are added to

the architecture. The situation is analogous to (but not

identical to) the attempted solution of complex com-

binatorial optimisation problems by hand: many years

ago it was accepted that automatic aids were required

in that �eld, which lead to developments in the com-

putationally intensive area of Operations Research.

For reasons given in [10, 5], we believe that truly

autonomous mobile robots will require visual process-

ing capabilities, and that automatic techniques for the

design of autonomous-agent cognitive control architec-

tures should be based on the use of arti�cial evolution

(i.e. a form of genetic algorithm), to develop parallel

distributed processing systems (i.e. \neural networks")

which are capable of coordinating sensory-motor activ-

ity in autonomous agents so as to exhibit desired adap-

tive behaviours. Brie
y, the rationale for our approach

is as follows:

� For a mobile robot to achieve a high degree of



special-purpose visuo-robotic equipment has been de-

signed and built to avoid the need to simulate either

sensors or actuators.

2 The Autonomous Robot Simulator

Our simulation studies are based on a careful simula-

tion of a real robot, built in the School of Engineering

at the University of Sussex. The body of the robot is

cylindrical, with the cylinder axis oriented vertically.

It has two independent drive wheels mounted left and

right, and a trailing rear freewheel castor which gives

tripod stability. In principle, the robot can travel in

straight lines or in arcs of varying radii; the minimum

radius is su�ciently small that the robot gives the ap-

pearance of spinning \on the spot".

The robot does not have a �xed control architec-

ture: there is elementary interfacing circuitry for its

sensors and motors, but the interfaces can either be

linked to custom-built control circuits, or via ana-

logue/digital and digital/analogue converters to a note-

book PC mounted on the top surface of the body, which

can be programmed to simulate neural-network con-

trollers. Its basic sensors consist of a number of one-bit

tactile sensors mounted around the curved surface of

its body. The tactile sensors are either \bumper-bars"

over an arc of the robot's circumference, or radially-

oriented \whiskers". The simulation uses �ne-time-

slice techniques to approximate the continuous nature

of the real system. Standard Newtonian mechanics are

used to simulate the motion of the robot, but noise

is injected to prevent the motion from being wholly

deterministic. Collisions of the robot or its tactile sen-



ing to the motors are also always present (each motor

requires two output units: the units' output values are

in the range [0,1] but the motors require control signals

in the range [-1,1]).

While our networks are homogeneous, in the sense

that only one type of unit is employed, there is no

enforcement of regularities in connectivity: arbitrary



short (16 bits) and �xed-length, while the other was

long (initially about 1000 bits) and variable-length.

The shorter chromosome coded for the positions and

acceptance angles of the two photoreceptors, while the

longer one coded for the control networks. Initially,

all the controller networks were well-formed and had

either one or two hidden units. In all individuals in

the �rst generation, both chromosomes were randomly

initialised.

Each individual controller was evaluated using E for

100 timesteps, which implies E 2 (0:0; 100:0]. However,

all the tests were conducted where the robot started at

a random orientation and location, with the distribu-

tion of locations biased for positions distant from the

centre (i.e. close to the walls), so the maximum possi-

ble score a controller could yield on any one trial was

somewhere between 75 and 85, depending on the noisy

interactions between the robot and its environment.

Because of this variability in the score, we evaluated

each controller 8 times, each with re-randomised posi-

tions and orientations, and then took its worst score

as an indication of its �tness: this is a much more reli-

able method of generating truly robust solutions than

taking the average or best score as �tness values.

We applied this evaluation method to eight separate

populations, each of size 60, each over 100 generations.

As was typical in most of our experiments, approxi-

mately 50% of the populations failed to evolve beyond

trivial advances on the initial random controllers, while

the remaining populations evolved close to optimal be-

havioural strategies. Under the E evaluation function,

the optimal behaviour is, from a random initial start-

ing position, to move towards the centre of the arena

as fast as possible, and when at the centre, stay there.

As will be seen, such behaviours were exhibited by the

evolved controllers examined in the next section.

6 Results

Of the eight populations evolved under E with a �xed

wall-height of 15:0, the two populations which evolved

to give the highest values of E for their best individual

will be considered. The best individual in the top-

scoring population is referred to as C1 (controller-1),

and the best individual in the second-highest-scoring

population is referred to as C2 (controller-2).

As will be seen in the �gures, the �nal evolved net-

work controllers are fairly opaque tangles of connec-

tions, but qualitative analysis techniques can be used

to eliminate some units and links from consideration.

The qualitative techniques we have found most use-

ful have been inspired by methods in the biological

�eld of neuroethology. Neuroethology is the study of

the neural mechanisms underlying the generation of

behaviour in animals: see e.g. [3]. Given that both

real neural mechanisms in animals and arti�cial \neu-

ral" mechanisms in our simulator are both the result

of Darwinian evolutionary processes, with the strong

constraint of intermediate viability, it is not altogether

surprising that similar analytic approaches are fruitful

in both �elds. Essentially, the qualitative analytic tech-

niques involve identifying, from the network diagram,

redundant units or links





(gantry) robot which has four degrees of freedom, three

translational (x; y; z) and one rotational (pan-angle for

a ccd camera mounting). Visual sensing is performed

by a custom-built frame-grabber, which feeds images

at 50Hz to a 66MHz 486DX2 \front end" PC, which

is responsible for handling low-level visual, tactile, and

motor processing. The \front-end" machine feeds vi-

sual and tactile sensory information to a 33MHz 486DX

PC, where the genetic algorithm runs and the control

networks are simulated; this machine sends control sig-

nals back to the front-end machine, thereby completing

the feedback loop. For a schematic diagram of the orig-

inal design of this robot, see



control, 1993. Also available as University of Sus-

sex School of Cognitive and Computing Sciences

Technical Report CSRP265.

[12] P. Husbands, I. Harvey, and D. T. Cli�. Circle

in the round: State space attractors for sighted

robots, 1993. Submitted.

Figure 1: Typical behaviour of the C1 controller. The robot's

position at each timestep is shown by an arrow; the midpoint of

the arrow `shaft' is the centre of the robot, and the length of the

shaft is the same as the robot's diameter. The robot starts near

the edge of the arena, moves to the centre, and then spins on

the spot. The `tip' of the arrow shows the `front' of the robot,

which is not necessarily the direction of travel: although in this

case the robot is moving forwards, it can travel in reverse.
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Excitatory Connection

Inhibitory Connection

Connection from/to sensor/motor




