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Abstract

Standard techniques for improved generalisation from neural networks include

weight decay and pruning. Weight decay has a Bayesian interpretation with the de-

cay function corresponding to a prior over weights. The method of transformation

groups and maximum entropy indicates a Laplace rather than a Gaussian prior. Af-

ter training, the weights then arrange themselves into two classes: (1) those with a

common sensitivity to the data error (2) those failing to achieve this sensitivity and

which therefore vanish. Since the critical value is determined adaptively during train-

ing, pruning|in the sense of setting weights to exact zeros|becomes a consequence

of regularisation alone. The count of free parameters is also reduced automatically as

weights are pruned. A comparison is made with results of MacKay using the evidence

framework and a Gaussian regulariser.

1 Introduction

Neural networks designed for regression or classi�cation need to be trained using some

form of stabilisation or regularisation if they are to generalise well beyond the origi-

nal training set. This means �nding a balance between complexity of the network and

information content of the data.

Denker et al [3] distinguish formal and structural stabilisation. Formal stabilisation

involves adding an extra term to the cost function that penalises more complex models.

In the neural network literature this often takes the form of weight decay [18] using

the penalty function

P

j

w

2

j

where summation is over components of the weight vector.

Structural stabilisation is exempli�ed in polynomial curve �tting by explicitly limiting

the degree of the polynomial. Examples relating to neural networks are found in the

pruning algorithms of le Cun et al [8] and Hassibi & Stork [6]. These use second-order

information to determine which weight can be eliminated next at the cost of minimum

increase in data mis�t. They do not by themselves, however, give a criterion for when to

stop pruning.

This paper advocates a type of formal regularisation in which the penalty term is

proportional to the logarithm of the L

1

norm of the weight vector

P

j

jw

j

j. This simulta-

neously provides both forms of stabilisation without the need for additional assumptions.
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2 Probabilistic interpretation

Choice of regulariser corresponds to a preference for a particular type of model. From a

Bayesian point of view the regulariser corresponds to a prior probability distribution over

free parameters w of the model. Using the notation



according to (2) with � = 1=�

2

and Z

D

= (2�=�)

N=2

. As � ! 0 we have the improper

uniform prior over w so that P (wjD) / P (Djw) and M is proportional to E

D

. This

means that least squares �tting, which minimises E

D

alone, is equivalent to simple max-

imum likelihood estimation of parameters assuming Gaussian noise [19, x14.1]. Other

models of the noise process are possible but the Gaussian model is assumed throughout.

2

2.2 Weight prior

A common choice of weight prior assumes that weights have identical independent normal

distributions with zero mean. If fw

j

j j = 1; : : : ;Wg are components of the weight vector,

then according to (2)

E

W

=

1





The weight prior in (2) depends on � and can be written

P (wj�) = Z

W

(�)

�1

exp��E

W

(10)

where � is now considered as a nuisance parameter. If a prior P (�) is assumed, � can be

integrated out by means of

P (w) =

Z

P (wj�)P



5 Priors, regularisation classes and initialisation

For simplicity Section 2.2 assumed a single weight prior for all parameters. In fact dif-

ferent priors are suitable for the three types of parameter found in feedforward networks,

distinguished by their di�erent transformational properties.

Internal weights. These are weights on connections that either input from a hidden

unit or output to a hidden unit. The argument of Section 2.2 indicates a Laplace prior.

MacKay [10] points out, however, that there are advantages in dividing such weights into

separate classes with each class c having its own adaptively determined scale. This leads

by the arguments of Section 4 to the more general cost function

L =

1

2

N logE

D

+



6 Multiple outputs and noise levels

Suppose the regression network has n output units. In general the noise levels will be

di�erent for each output. The data mis�t term then becomes

P

i

�

i



the course of training, otherwise the trained network will be over-regularised. The rest

of the paper is devoted to this issue.

9

The approach is as follows. It is assumed that the training process consists of iterating

through a sequence of weight vectors w

0

;w

1

; : : : to a minimum of L. If these are consid-

ered to be joined by straight lines, the current weight vector traces out a path in weight

space. Occasionally this path crosses one of the hyperplanes w

j

= 0 where w

j

is one of

the components of the weight vector. This means that w

j

is changing sign. The question

is whether w

j

is on its way from being sizeably positive to being sizeably negative, or

vice versa, or whether jw

j

j is executing a Brownian motion about w

j

= 0. The proposal

is to pause when the path crosses, or is about to cross, a hyperplane and decide which

case applies. This is done by examining @L=@w

j

. If @L=@w

j

has the same sign on both

sides of w

j

= 0, w

j

is on its way elsewhere. If it has di�erent signs|more speci�cally

the same sign as w

j

on either side|this is where w

j

wishes to remain since L increases

in either direction. In the second case the proposal is to freeze w

j

permanently at zero

and exclude it from the count of free parameters. From then on the search continues in
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Figure 1:



by (14). The criterion for stability can then be written in terms of E

D

as

�

�

�

�

@E

D

@w

j

�

�

�

�

<

e

�

c

=

e

�

and a similar argument establishes (9) in the case of a single regularisation class when �

and � are assumed known.

It is convenient to de�ne the objective function partial derivative @L=@w

j

at w

j

= 0 as

follows. If w

j

is bound to zero, i.e. the partial derivative @L

D

=@w

j

is space-like, @L=@w

j

is

de�ned to be zero. If it is time-like, it is de�ned to be the value of the downhill derivative.

Explicitly using the abbreviations

b =

@L

D

@w

j

and a =

e

�

c

then

@L

@w

j

=

8

>

>

>

>

>

<

>

>

>

>

>

:

b+ a if w

j

> 0

b� a if w

j

< 0

b+ a if b+ a < 0

b� a if b� a > 0

0 otherwise

(19)



that �* is determined in this way. All that is required is an iterative procedure that

moves at each step some distance along a search direction s from w to w + �s, together

with some preferred way of determining � = �*.

11

Unless it was specially designed for

that purpose, however, it can be assumed that the preferred algorithm never accidentally

alights on an exact zero for any weight.

To allow for this possibility, note that the line w+�s intersects the hyperplane w

j

= 0

at � = �

j

where

�

j

= �

w

j

s

j

(21)

provided js

j

j > 0, i.e. provided the line is not parallel to the hyperplane. Let �

k

be

the nearest to �* of the f�

j

g de�ned by (21). In other words w + �

k

s is that point of

intersection of the search direction with one of the hyperplanes fw

j

= 0g which is nearest

to w + �*s. If w + �

k

s is su�ciently close to where the predicted minimum occurs at

w+ �*s, or equivalently if �

k

is su�ciently close to �*, replace �* by �

k

. In that case the

next weight vector in the optimisation process is given by w + �

k

s rather than w + �*s.

More explicitly the criterion for �

k

beR20 r

at �k
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Figure 4: Replacing the output weights of input-dead hidden units by zeros by means of

a forward pass, with compensating adjustments in the biases of destination units.

to zero and the bias �

j

on unit j is increased by w

ij

�

i

(�

i

). The result of doing so is shown

in the righthand part of Figure 4. This process should be performed using a forward pass

through the network since the newly frozen output weights of the unit indicated may be

input weights for some other hidden unit.

Let us call a network tidy if each hidden unit satis�es the condition that its bias

and all input and output weights are zero whenever either all its input weights are zero

or all its output weights are zero. It can be shown that every feedforward network is

functionally equivalent to a tidy network and that a functionally equivalent tidy network

can be obtained by a single forward and backward pass of the transformations indicated

in Figures 3 and 4 performed in either order.

In fact we are concerned here only to tidy networks in which all input weights or all

output weights are not merely zero but are frozen at zero. But the process is the same.

Furthermore it is clear that if all the input and output weights of a hidden unit are zero,

necessarily @L

D

=@w

j

= 0 for each of these weights and consequently @L=@w

j

= 0 in virtue

of (19). It follows that condition (22) is satis�ed so that these weights are automatically

frozen and no longer included in the count of free parameters.

8.2 The algorithm

The algorithm can be stated as follows. Consider all weights and biases in the network to

form an array w. Suppose there is also a parallel Boolean array frozen, of the same length

as w, initialised to FALSE for each component. Let g stand for the array corresponding

to rL. Suppose in addition that there is a variable W[c] for each regularisation class

counting the number of currently non-frozen weights in that class.

It is assumed that a sequence of weight vectors w arises from successive iterations of

the optimisation algorithm and that the weight vector occasionally includes a new zero

component w[j] using the procedure of Section 7.2. After each iteration on which the

new weight vector contains a new zero, w and frozen must be processed as follows.

1. freeze zeros in accordance with (22)

frozen[j] := (frozen[j] OR (w[j] = 0 AND g[j] = 0))

14



for each component of the weight vector;

2. extend freezing, maybe, using the tidying algorithm of Section 8.1 and set

frozen[j] := TRUE

for each newly zeroed weight;

3. recount the number W[c] of non-frozen weights in each class.

Because of the OR in step 1, freezing is irreversible and after a weight is frozen at zero its

value should never change. If s is the array corresponding to the search vector, this is

best enforced whenever the search direction is changed by requiring that

IF frozen[j] THEN s[j] := 0

for each component of s. It is also wise to append to the de�nition of the gradient array

g the stipulation

IF frozen[j] THEN g[j] := 0

for each component of g.

Each time a weight is frozen the objective function L de�ned by (16) changes because

of a change in the relevant W

c

. But since E

D

is unchanged, this is a simple. It will

also be necessary to recalculate the gradient vector rL. But this is equally simple since

rL

D

only changes if it was necessary to do some tidying in step 2 and this will only be

for newly frozen weights which automatically have zero gradients, without the need for

calculation.

Whenever one or more weights are frozen, the optimisation process restarts in a

lower dimensional space with the projection of the current weight vector serving as the

new initial guess. This means that the compound process enjoys whatever convergence

and stability properties are enjoyed by the simple process in the absence of freezing.

Assuming the simple process always converges, each period in which the objective function

is unchanged either terminates with convergence or with a strict reduction in

P

c

W

c

.

Since each W

c

is �nite the compound process must terminate.

9 Examples

Examples of Laplace regularisation applied to problems in geophysics can be found in

[25] and [26]. This section compares results obtained using the Laplace regulariser with

those of MacKay [10] using the Gaussian regulariser and the evidence framework. The

problem concerns a simple two joint robot arm.W
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Figure 6: Test error versus number of hidden units.
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Figure 9: Live hidden units versus noise level for an initial 50 hidden units.

Figure 9 shows mean numbers of live hidden units, with one standard deviation error

bars, in networks corresponding to each of the 19 noise levels. This is the number of

hidden units remaining in the trained network after the pruning implicit in Laplace

regularisation. Note that the number of initially free parameters in a 50 hidden unit

network with 2 inputs and 1 output is 201 so that with 200 data points the initial ratio

of data points to free parameters is approximately 1. This should be contrasted with the

statement in [10] that the numerical approximation needed by the evidence framework,

when used with Gaussian regularisation, seems to break down signi�cantly when this

ratio is less than 3� 1.

Figure 9 indicates that there ought to be little purpose in using networks with more

than 20 hidden units for noise levels higher than 0.05, if it is to be correct to claim

that results are e�ectively independent of the number of hidden units used, provided

there are enough of them. To verify this a further 190 networks were trained using an

initial architecture of 20 hidden units. Results for the �nal numbers of hidden units

are shown in Figure 10. Comparison with Figure 9 shows that if more than 20 hidden

units are available for noise levels below 0.05 the network will use them. But for higher

noise levels, there is no signi�cant di�erence in the number of hidden units �nally used,

whether 20 or 50 are initially supplied. The algorithm also works for higher noise levels.

Figure 11 shows corresponding results for noise levels from 0.05 to 0.95 in increments of

0.05. Note that in all these demonstrations with varying noise, the level is automatically

detected by the regulariser and the number of hidden units, or more generally the number

of parameters, is accommodated to suit the level of noise detected.
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Appendix

The evidence framework [9, 10, 20] proposes to set the regularising parameters � and �

by maximising

P (D) =

Z

P (Djw)P (w) dw (23)

considered as a function of � and �. This quantity is interpreted as the evidence for the

overall model including both the underlying architecture and the regularising parameters.

From equations (1) and (2) it follows that

P (D) = (Z

W

Z

D

)

�1

Z

e

�M

dw:

To evaluate the integral analytically, M is usually approximated by a quadratic in the

neighbourhood of a maximum of the posterior density at w = w

MP

where rM vanishes.

The approximation is then

M(w) = M(w

MP

) +

1
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