US

Univer it of Su x

Computer Science Report

Proof methodologies for behavioural
equivalence in Distributed picalculus

Alberto Ciaffaglione
Matthew Hennessy
Julian Rathke

Report 2005:03 April 2005

Department of Informatics
University of Sussex
Brighton BN1 9QH

ISSN 1350-3170

Proof methodologies for behavioural equivalence in
Distributed picalculus
Alberto Ciaffaglione, Matthew Hennessy andJulian Rathke

Abstract. We focus on techniques for proving behavioural equivalence between systBms in

Alberto Ciat

Proof methodologies for behavioural equivalence in Distribpitead culus 3

categories, for systems, and agents. A typical system takes the form

(newe : E)II[PT j KIQN) j RI

This represents a system with two siteandk, with the agent® andR running

at the former and) at the latter; moreoveP and Q, although executing at dif-
ferent sites, share some private informatiemf typeE. The syntax for agents,

or processes, is an extension of that of glvalculus [SWO01]. There are input

and output on local channels, parallelism, matching of values, iteration, and a
migration construct. For example, in the system

I[P]gotok:Ql j KIRI
the proces€) can migrate front to k, leading to the resulting system

IPT j KIQjRI

Finally, processes have the ability to create new instances of names (channels,
newc, and sitesnewloc); their declaration types dictate the use to which these
will be put.

The valuesyY, communicated along channels consist of tuplesiople val-
ues v

4 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

Base Types: base::=int | bool | unit j > |
Value Types: A:=basej C | Celoc j K

Local Channel types: C ::=rhTi | whTi | rwhTi

Location Types: K:=loc[ci:Cq;iiiich:Chl;n O

Transmission Types: T :=(Ay:::;An);n 0O
Figure 2. Types forDpi - informal

This generates a new reply channel,at the declaration typ®, and awaits
input on this channel to be printed. Concurrently, it sends to the server site an
agent, which sends to the request channel the tuple consisting of somewalue,
hopefully an integer, and the reply address;. Then, running the combined
system

SjC (1)

should result in a boolean being printed at the client’s site, the value of which is
determined by the primality of.

2.2 Typing

Dpi is a capability based language, in the sense that the behaviour of processes
depends on the capabilities the various entities have received in their environ-
ment. Formally, these capabilities are represented as types, and the various cate:

gories of types we use are given in Figure 2. Apart from the standard base types,
and the speciabptype>, the main ones are

local channel types: these are ranged over Ig/and can take the formwhTi,
giving the ability to both read and write values of typeor the restricted
supertypeshTi andwhTi;

non-local channel types: these take the forr@eloc, and a value of this type is
a structured valuesel;

| of this type gives access to the channels, or resou;et, typeC;, for
1 i n

In this overview we omit one further category of types, thategistered names
as they play no part in the current paper; as usual, the reader is referred to
[HMRO4] for an explanation of their role in ensuring consistency between the

Proof methodologies for behavioural equivalence in Distribpitead culus

6 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

The rules for typing agents are more or less borrowed fronpitdadculus
[PS00], with the addition of a rule for migration. For example, (local) input and
output are handled by the rules

(ty-out)

r«<,v:T (ty-in)
r«, P I

I “,u:whTi

r*,uhVviP

Proof methodologies for behavioural equivalence in Distribpitead culus 7

that is required of\ in order to type both the server and the client is t8gethe
type associated with the request channel, toAbant; whboolieloc i.

There is an interesting point to be made here. The client generates the reply
channelr with both read and write capabilities; only the latter is sent to the
server, viareq, and the former is retained for internal use. This use of restricted
capabilities provides a certain level of protection to the client, as it knows that
the reply from the server can not be usurped by any other client.

2.3 Behaviour

The behaviour of a system, that is the ability of its agents to interact with other
agents, depends on the knowledge these agents have of each others capabilities.
In the example just discussed we have seen the client generating a reply channel
with two capabilities, but only making one of these externally available; indeed,
the proper functioning of the cliefsierver interaction depends on such decisions.

Definition 2.1 (Gonfigurations). A configurationconsists of a pail BM, where
I is a type environment which associates some type to every free ndvhe in
there is a type environmehtsuch thal” * M andI" <: 1

This latter requirement means thatlifcan assign a typ&, to a namen, then

I' can assign a typ@&r such thatTr <: T,. Again, viewing types as sets of
capabilities, this means thag, representing the knowledge of the external user,
IS a subset of -, the actual set of capabilities used to type the syd#em

So we define the behaviour in terms of actions over configurations; these are of
the form

IBM 1 1°BM° (2)
where the label can take any of the following forms
. an internal action, requiring no participation by the user;

(& : E)k:a?V: the input of valueV along the channed, located at the sitk.
The bound names ire)are freshly generated by the user;

(&: E)kalV: the output of valud/ along the channe, located at the sitk.
The bound names ire)are freshly generated by the environment.

The rules for defining these actions are given in Figure 3 and Figure 4, a slightly
different but equivalent formulation to that given in [HMRO4]. The guiding prin-
ciple for (2) to happen, is tha®l must be able to perform the actionand the

user must have, i, the capability to participate in the action. The rules use
some new notation for looking up the types associated with channels in envi-
ronments: the partial functiork (k; a) and 1V(k; a) return the read, respectively
write, type associated with the chanaeht the locatiork in 1 (of course these

Alberto Ciataglione, Matthew Hennessy and Julian Rathke

(m-in)

IYka)# 15V I1Yka)

1 Bkla?2(X) R] “®¥ 1 B K[Rfi]l

(m-weak)

I'he: Ei B M @Dka? jopg o

IBM (€E &@)k:a?!' 1°'B M° bn(e) ¢ 1

(m-out)

1'(k @) #

1 BkahViP] “®Y I; hV : 17(k; @)iek B K[P]]

mopen) Goway g0 g @ LB 2P1L0.36 58 TR{DITILITRA

Proof methodologies for behavioural equivalence in Distribpitead culus 9

(m-weak), allows us to derive the following action from the serger
ABS eRE A:rec: R B s[goto c:r!hisprime\ve)i stop]] (3)
where is the input actiorsrreq?(v; reC), because
A;reC:RBS ¥ A;rec: R B s[goto c:rthisprimgv.)i stop]

Similarly, (m-out) requiresl to have aeadcapability ona atk, in order for
k[a'hVi P] to be able to perform the obvious output; note that here the current
knowledge of the usell, is augmented by whatever new knowledge which can
be gleaned from the received valMe Intuitively, hV : Tiek decomposes the
valueV, relative to the typ&, from the standpoint df; this last only comes into
play whenV contains instances of local channels, which are then interpreted as
channels ak. But the important point innj-out) is that the type at whicV
is added tol is 1'(k; a), the reception type that the user currently hasatk.

Thus (m-open) allows us to deduce

A B (newrac : R) s[req!hvg; reci stop] @R A:rec: Ry B S[stop] (4)
where is the output actiosreq!hv.; reci, because withnj-out) we can derive
A;reC: > B g[reg'hvg; reci stop]] ¥ A;rec: Ry B s[stop]l

The use of> is simply to ensure that we have a valid configuration; but note that
the user has gained only the restricted capalf{{fyon the new channel rather
than the more liberal declaration capabilRy because the former is the type at
which the user can receive values alaag.

The rules for the internal actions are given in Figure 4, and most are straight-
forward. We have labelled some asactions, which will be useful in the next
section; but for the moment these labels can be ignored. The only interesting
rule is (m-comm), which formalisesommunicationNote that, in the hypothe-
ses of both variations, arbitrary user environmehisandl,, are allowed. This
may be surprising at first, but intuitively-actions should be independent of all
external knowledge. For example, we can use (3) and (4) above to derive

I BSj(newrecC: R) s[reqg!hvg; reci stop]] X
I B (newrec : R) S[goto c:rlhisprimeVq)i stop] j s[stop]]

for an arbitraryl .

We now have a labelled transition system in which the states are configura-
tions, and we can apply the standard definition of (weak) bisimulation.

10

Alberto Ciataglione, Matthew Hennessy and Julian Rathke

(m-comm)

1,BM GO 2pMY I,BN @Bk2Y LB N

IBMjN ¥ 1B (newe: &)(M°jN?)

(m-comm)

1,BM GO oM],BN EBkeA 10BN

IBMjN ¥ 1B (newe: 8)(M°jN?)

(m-move)

I Bklgotol:P] ¥ 1BI[P]

(m-c:create)

I Bkl[(newcc:C) Pl ¥ 1B (newcek: C)K[P]

(m-l:create)

I Bk[(newlocl:L) P] ¥ 1B (newl:L)K[P]

(m-eq)
I BKk[ifv=vthenPelse Q] ¥ 1BK[P]

(m-neq)

I Bk[if vi =vothenPelse Q] ¥ IBK[Q] (vi#W)

(m-split)

1 BK[PjQI ¥ IBKIPIjKIQI

(m-unwind)

IBK[P] ¥ IBK[PjPI]

Figure 4. Internal actions-in-context fdDpi

Proof methodologies for behavioural equivalence in Distribpitead culus 11

Definition 2.2 (Bisimulations). We say a binary relation over configurations is
a bisimulationif both it, and its inverse, satisfy the following transfer property

(lmBM) R (INBN) (lMmBM) R (InBN)
implies B
?
(1w B MY (I BMY) R (Ine BNY)
Here we use standard notation, see [MPW92], widhrepresenting 1 |

! and=) meaning ! ,if is , and=) otherwise. This allows a single
internal move to be matched by zero or more internal moves.
We let s denote the largest bisimulation between configurations.

Rather than writing [B M) s (1 B N); we use the more suggestive notation
lE M uisN

This can be viewed as a relation between systems, parameterised over type envi-
ronments which represent user’s knowledge of the systems’ capabilities.

It is this bisimilarity s which is the object of our study: we aim to show
that, despite the complexity of its definition, tractable proof techniques can be
developed for it.

Finally, we should remark this is not an arbitrarily chosen version of bisimu-

2) lation equivalence. In [HMRO4] its definition is justified in detail: it is shown to

.einp-0.69 98.95 TD[(.e)-4(inp-fe)-4(inpen)-250(or)’ in(bisimulation)0otO(invi-)d(t0(inn

12

Alberto Ciataglione, Matthew Hennessy and Julian Rathke

(s-extr)

(s-com)

(newe:E)(MjN) M j (newe:E)N if bn(e) ¢ fn(M)

MJN) (

Proof methodologies for behavioural equivalence in Distribpitead culus 13
-actions, include
KIPj QI wis KIPTjK[QI
kl[goto l:P] pis [P
k[(newcc: C) P] pis (newcek : C)K[P]

But these -labelled internal actions also provide us with a very powerful
method for approximating bisimulations, in the spirit of [JR04].

Definition 3.5 (Bisimulations up-to-). A binary relation between configura-
tions is said to be d@isimulation up-to- if it satisfies the following transfer
properties

(ImBM) R (INBN) (ImBM) R (INnBN)
implies

2
(1w B M9) (Iwe BMY) A

14 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

Proof: We leave to the reader to check that the relatiops(R pis) is a
bisimulation over configurations. The key properties for establishing this are the
two inclusions ¥ bis (Proposition 3.4) and vis (Proposition 3.2),
Lemma 3.3 and transitivity, in Definition 3.5, of bo#y, (due to Lemma 3.6)
andA. The result then follows, since {is R pis) trivially containsR.

4 Crossing a firewall

Let us consider thérewall example, first proposed in [CG98] and studied at
length in [GC99, LS00, MNO3] within versions of Mobile Ambients. Intuitively,

a firewall is a domain to which access is restricted: only agents which are per-
mitted, in some sense, by the firewall are allowed in. A simple example takes the
form

FCewf:F)f

Proof methodologies for behavioural equivalence in Distribpitead culus 15

Then one might expect to be able to derive
I'E FjA s (newf :F)(f[P] gotoatelllhfijQ]) j a[RI] (7)

But this happens not to be true, because of the implicit assumption that the infor-
mation channetell in a can only be accessed by partners in the entry protdcol,
anda. But, in order for (6) to be true, we must have', tell : rwhF,1; and this
allows other agents in the environment accegsltoFor example, consider

Rogue (b[goto a:telllhbi]]

and suppose that the only type inference frbnmvolving b isT" “ b : loc; so
I" is not aware of any resourceslat Nevertheles§ “ Rogue, and therefore
Contextuality(Theorem 3.1) applied to (7) would give

I' = FjAjRogue s
(new f : F)(f[P] gotoatelllhfijQ]) j a[R] j Rogue

But this is obviously not the case, as the left-hand system can reduce via a series
of -steps (representing the interaction betw@eaandRogue) to the state

I'B FjalR]jbl[Q]

Under reasonable assumptions about the @@die right-hand system has no
corresponding reduction to a similar state. On the left-hand side the(@au®v
located ab, can not run, while on the right-hand side, no matter whsteps are
made,Q will be able to execute at.

Thus (7) can not be true.

However, our framework allows us to amend the correctness statement (7)
above, taking into account the implicit assumption about the information channel
tell. The essential point is that the protocol works provided dimdy the firewall
can write ontell. This can be formalised by proving the equivalence between the
two systems relative to a restricted environment, one which does not allow write
access taell.

First some notation. Let us wrifeé “"®*V : T to mean

r«v:T
I“V:T impliesT <: T’

In other wordsT is thelargesttype which can be assigned % Now suppose
I is a type environment which satisfies

(i) 1 “Mtell : rhFi
(i) 1 ° a[R]
(i) 1 °(newf :F)f[P]

16 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

The import of the first requirement, which is the most important, is that systems
in the computational context can not writetefi. The other requirements, which
are mainly for convenience, ensure that the residual behaviawarat f is well-
behaved, although a sidéfect is that they also can not write @#l. Under these
assumptions, we prove

I FjA s (newf : F)(f[P] gotoatell!hfijQ) j a[R] (8)
First note that (up-to structural equivalence)
IBFJA ¥ FjAjalR]

via (m-split) and f(n-ctxt), whereA; is a shorthand foa[tell?(x) goto x:Q]].
So, by Propositions 3.2 and 3.4, it isfsu

Proof methodologies for behavioural equivalence in Distribpitead culus 17
M has the fornfg j A jII, (aftell!h fi])"
N has the fornfg4j f[QI j I1, (afltellthfi])"
wherell, (a[tell!hfi])", for somen 0, means copies ofa[tell!hfi] run-
ning in parallel.
Proposition 4.1. The parameterised relatidt defined above is a bisimulation
up-to- .
Proof: Supposel = MRN. Let us consider all possible actions frahB M. In

fact, itis suficient to consider the case (b) above, wklkandM andN are of the
prescribed form. The actions fall into one of three categories (for convenience

we shorterTI,, (a[tell!hfi])" with IT,).

18 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

Note that the firewalF allows, in principle, multiple entries of agents from
a. So, for example, iR

Proof methodologies for behavioural equivalence in Distribpitead culus 19

The first requirement establishes thia computational context can not read on
req, while the following points ensure that the residual behaviour at the server
and the clients is well-behaved, with the sideeet that neitheS’ nor C can
read orreq.

First, let us show that one client interacts correctly with the server

1= SjC1 bis Sjcill(newcr : R) rlhisprimevy)ijChl (10)
Note that (up-to-structural equivalence)
IBSjC; ¥ (newrec;:R)S,js[S"]]slreq!hvs;recsiljc[Ch]
where we usé&, as a shorthand fasf| req?(X; yez)goto zy'hisprimgx)i], and

I BSjcill(newcr : R) rthisprimelv,)ijCl] ¥
(newrec; : R) S, j SIS j cillr!hisprime(vy)ill j ci[CY 1]
By Propositions 3.2, 3.4,

20 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

Proposition 5.1. The parameterised relatidt defined above is a bisimulation
up-to- .

Proof. Supposel M R N. The actions frond B M in the case (b) above fall
into one of three categories.

FirstS; is responsible
I,BM Y o req?(X Yez)goto zylhisprimex)ij R j s[req!hvi; recsillj Iy
whereR is a shorthand foreq?(x; yez)goto zy!hisprime(x)i. But

I, B s[req?(x; yez)goto zy!hisprimeX)i j R j s[req!hvy; recii]l j I, ¥
St jy j s[req!hvy; recyi]l j Iy

and this can be matched by
I, BN ¥ S, jIijc[rlhisprimgvy)i] j I,

because both configurations belondgRoclause (b), up-to structural equiva-
lence.

The third component], (s[req?(x; yezjgoto zy!kisprimgx)i])", s responsi-

ble for the action, which is eitherreq? ij; dj@k; or (eE)sreq? ij; d;@kK; .
These actions correspond to the delivery of (new) data by the environment
(from which the system is allowed to learn infinitely new names), and are
followed by the actionri-move). However, it is easy to see thht B N can

Proof methodologies for behavioural equivalence in Distribpitead culus 21

This completes our proof of (10), that one client can interact correctly with
the server. Contextual reasoning can now be employed to generalise this result
to an arbitrary number of clients. For example, let us show

1= SJC1JCo pis SjIizr1p Gill(newer : R) r!hisprime(vi)ijC?]] (11)
Because ofl “ C, (requirement (iii) above)Contextualityapplied to (10) gives

1= SjC1jCy pis Sjcil(newcr : R) rlhisprime(vy)ijCi]jCs (12)
On the other hand, repeating the analysi€pbn C,, we obtain

1= SjCo bis Sjcol(newcr : R) rlhisprime(vy)ijCl]
But 1 “ C; (again (iii)) also impliesl “ ci[(newcr : R) rlhisprimgvy)i | Cg]],
and therefore, b ontextuality
1 £ SjCyjcill(newcr : R) rthisprime(vy)ijClT i
S j izt Cill(newcer : R) rlhisprime(vy)i j C']

So we conclude (11) from (12), Proposition 3.2, and transitivity .
It is then a simple matter to extend this reasoning, using induction, to show
that an arbitrary number of clients can be handled

This we leave to the reader.

As a further example of the modularity of our proofs, let us consider a partic-
ular instantiation of the residual processg5andC: we setS' to stop andC!
to r?(x) print;'hxi, whereprint; are local channels. For convenience we restrict
attention to two clients, and let us assume that they send the integer valuds
andv, = 3, respectively, to the server. So we have

S® C o req?(

22 Alberto Ciataglione, Matthew Hennessy and Julian Rathke
ther, to the tasks

1 = SYjci[(newcr : R) rlhisprimeg4)ijr2(X) print 'hxi] pis
S%jcy[[print;!hfalsd]

I = SYjcol(newcr : R) rlhisprime3)ijr2(X) print,!hxil pis
S¥j co[[print,!htruei]]

Note thatContextualitydoes not allow us to elimina®® from these judgements,
sincel “ SY is not true. Nevertheless, it is a simple matter to construct a
witnessing bisimulation to demonstrate directly these two equivalences, as the
reader can check.

6 Metaservers

In this section we describeraemory servicby involving thenewloc operator of
Dpi, which allows the creation of new instances of sites. A (meta)server contains
a resourcesetup, where requests are received, and installs the service at a new
site, thus providing personalised treatment to its clients.

A first version of the server receives a return address, generates a new lo-
cated memory cell, and installs some code there, meanwhile delivering the new

Proof methodologies for behavioural equivalence in Distribpitead culus 23

An alternative, slightly dterent version of the server leaves to the clients the
responsibility to create the memory cells, just installing the servicing code at the
proffered site

S C [setup’?(x; yez) goto x:Mem j goto zy!]

Correspondingly, clients generate an acknowledgement channel and a new loca-
tion, send a request to the server, and await the server to acknowledge the service
has been installed

C! Ccl(newct: T) (newlocm : M) goto &:setup’thm; tec;i j t?P;(my)]

whereT = rwhuniti.
We want now to relate the twoftierent approaches, therefore connecting the
behaviour of the two following systems, relative to a typing environnlent

1ES|CjC (13)
1 =S°jCliCs (14)
Our goal is to establish that, from the point of view of the clients, under certain

hypotheses the two kinds of serv&andS’ lead to equivalent behaviour. This

means finding a suitable type environmdrduch that
1= SjCijCs s S’jCIjC) (15)
It is immediate to notice that the correctness of this protocol requireghbat
computational context should have neither write nor read access teediup
andsetup® channels Thus, the equivalence can be proved relative to a restricted
environmentl, satisfying
I cMax I cgpax

setup : > setup’ : >

Now, the internal actions can be used to deduce a derivation from (13) and (14)
to the systems

I = SjIior (newm : M

24

Alberto Ciat

Proof methodologies for behavioural equivalence in Distribpitead culus

(b) or (newrqeCs :
(c) or (hewrieC; :
(d) or (newrzecC; :

(e) or hewrieC; :

Rir2eCz 1 Rymy 1 M) SjllnjSi2jCoj M1jCipjCo
R;r2aC : Rymp i M) SjllnjSi1jCo1jM2jCiajCoa
R;my : M) SjII,jSi2jCr2) M1) Cp,

Rimp: M) SjIIj S

25

26 Alberto Ciataglione, Matthew Hennessy and Julian Rathke

with the Dpi calculus [HRO2b]. In order to cope with bisimulation equivalence
in Dpi [HMRO04], it is natural to look for bisimulations up-to in the spirit of
[SM92]. More precisely, we have introduced in our wdrikimulations up-to

-reductions which have been inspired by a similar approach to concurrent ML
[JRO4]. This technique actually relieves the burden of exhibiting witness bisim-
ulations, and its feasibility has been proved to be successful, combined mainly
with Contextuality

Proof methodologies for behavioural equivalence in Distribpitead culus 27

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes (I and

[PS00]
[SM92]
[SWO01]

[USO01]

I). Information and Computatiqri00(1,2), 1992.

Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the polymorphic
picalculus. Journal of ACM47(3), 2000.

Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”. In Proc.
of CONCUR Lecture Notes in Computer Scierg®0, Springer, 1992.

Davide Sangiorgi and David WalkeiThe picalculus: a Theory of Mobile Processes
Cambridge University Press, 2001.

Asis Unyapoth and Peter Sewell. Nomadic pict: correct communication infrastructure
for mobile computation. In Proc. ¢fOPL, 2001.

