JPolicy: A Java Extension for Dynamic Access Control

Tim Owen [an

Although this client-server mode of web service interaction is a powerful
extension to the monolithic model, it can involve a considerable amount
of network traffic for applications that require intensive dialogue with a
remote service. Furthermore, clients with limited resources or connectivity
are not always the most appropriate place to execute code that interacts
with a remote service.

The basis of the Remote Evaluation [26] model (also termed Remote
Execution, or just RE) is that service providers accept programs from third-
party clients and host the execution of the code themselves. This extends
the RPC style by allowing code to be packaged and sent to a server, rather
than simply supplying data with a request for the server to execute its
own code.

Services such as Google, Amazon and Ebay indicates that policy-based
control of service use is already of interest. In

to them as their unique entry point.

Since the functionality of a service object is accessed through its meth-
ods, we can control the behaviour of client programs that use the service
by enabling or disabling the awvailability of each service API

modal, in the sense that the invocation of a modal method on some
object can only proceed if the object is currently in the abstract state
named in the clause.

Each object of a class that contains modal methods maintains a no-
tion of which abstract states it is currently in. For example, the Net-
workAccess class in Figure 2 has modal methods naming an abstract
state called ALLOW_NET and each NetworkAccess service object will
record whether it is presently in the abstract ALLOW_NET state or
not.

The transitions between being in some abstract state and not are driven
by an external policy rather than the object itself. The language sup-
ports the definition of policies, that determine when an object should
enter or leave an abstract state. The conditions underati$2fIgat0nGHR080Adr

2 Modal Methods and Abstract States

The primary purpose of the JPolicy extensions is to enable service hosts to
control when the methods in their Java services can be called. Since the
functionality of a service is accessed by invoking its methods, then we can
enable or disable the use of particular service functionality by selectively
blocking the invocation of a method in that service. This allows the service
host to control what

a yes/no flag, so e.g. a MearchEngine object is either in the CAN_SEARCH
abstract state or it is not. The actual meaning of the abstract state, in
terms of when individual objects are in the state is determined by the
policy associated with an object — this is explained below in Section 4.

Since a class may contain several modal methods, each with a when
clause potentially naming different abstract state names, the result is a set
of independent abstract states. Each object of that class maintains a notion
of its current combined status: which abstract states it is presently in, and
which it is not. This status then controls the availability of methods,
because the decision to allow a method call of a modal method to proceed
is determined by whether the target object is in the relevant abstract state
at that moment. A related issue here is that, in our current design, only
instance methods can be modal — we do not allow Java’s static methods
to have when clauses. This is because the abstract state is a property
of individual objects, but static methods are not invoked with respect to
any specific object. We could extend the language to allow static modal
methods, by associating the static abstract state with the class itself, in
a similar way to Java synchronization on static method calls where the
class’s lock is used.

In terms of the diagram in Figure 2, the abstract state is the “switch”
that manipulates the handling of method invocations. As shown in the
NetworkAccess service, more than one modal method’s when clause can
refer to a particular abstract state. In that case, the availability of all those
modal methods is tied together: either they are all enabled or all disabled.
It is the task of service programmers when adding when clauses to make
this decision about which modal methods should be controlled by which
abstract state names.

An important feature of our design is that objects do not control the
status of their set of abstract states, rather this is the responsibility of
separate policies. An object enters or leaves an abstract state when its
associated policy dictates. We discuss the definition and use of policies in
Section 4.

result of the modal method call if the invocation proceeds immediately,
and its scope is only within the following code block. If the query method
is switched off due to the current abstract state of the searchService
object then the caller will not block, but the method call and code block
will be skipped and execution continues after the block. Another use of
this construct is to allow a second block of alternative code to be executed
in the case of the modal method call not proceeding:

try Vector results=searchService.query("some terms") {
// code block using the results value

+
else {

// alternative code block (results not in scope here)
+

Here, the alternative block is executed if the query call cannot proceed
immediately. The third variation of this construct simply includes a mil-
lisecond timeout clause to the modal method invocation attempt:

try for 100 Vector results=searchService.query("some terms") {
// as before
+

In this form, if the object’s abstract state changes to re-enable the method
within the specified tTihk71990Td[(objuedth8(scop)-2999.9]TJ18.7203nefitOTd(A9)’

As explained above, the central concept in our work is the abstract
state of an object, which is reflected in the set of named abstract states
that appear in modal method when clauses. The availability of a modal
method is dictated by the current status of the target object’s associated
abstract state. As Figure 2 shows, the role of policies in JPolicy is to
cause changes in the abstract state of objects, whereas the service objects
themselves only examine the status and do not change it. This separation of
concerns means that policies are not hard-wired into the service code itself.
Abstract states act as the intermediary: individual policies determine when
to change an object’s abstract state, and the object reads this status when
deciding whether to allow a method invocation to proceed. Consequently,
the job of the policy declaration construct we have included in JPolicy is
to define exactly when an object is in an abstract state and when it is not.

4.1 Policy Specification

In the JPolicy language we extend the Java syntax with a top level con-
struct for specifying a policy. Therefore a compilation unit of Java code
contains a list of class, interface and policy definitions. Our model of a
policy is in the form of a labelled transition system — essentially a finite
state automaton, consisting of a set of concrete states with transitions be-
tween them. The policy definition declares the name of the class for which
it can be used, then specifies the sets of its concrete states that correspond
to each abstract state of objects of that class. The general form of a policy
specification is as follows:

policy PolicyName for ClassName {
-> initialConcreteState
transition concreteStatel -> concreteState2 when (conditionA)
transition concreteState2 -> concreteState3 when (conditionB)

ABSTRACT_STATE_X when { list of concrete states }

ABSTRACT_STATE_Y when { list of concrete states }
... // for each named abstract state declared in ClassName

12

class SearchEngine {
Vector query(String searchTerm) when CAN_SEARCH { ... }
}

policy BoundedQueries (int bound, int interval) for SearchEngine {
int credits = bound;
-> some;

// Every time we call the method, the counter decrements...
transition some -> some when (query)
{ credits = credits-1; }

// Until none are left...
transition some —> none when (credits <= 0);

// Then the counter is replenished at next time interval
transition none -> some when ((TimeService.now Y interval)==0)
{ credits = bound; }

CAN_SEARCH when { some }

Figure 3: Example Policy Specification

The particular concrete states and transitions of these automata reflect the
specific nature of each policy. For example, suppose we are specifying a
Google-like Web Services policy that a certain modal method in a service
can only be invoked a limited number of times in some time period. The
policy may have two concrete states, to represent whether the call limit
has been reached or not, and transitions between these based on a method
call counter and a time event. Figure 3 shows how this policy can actually
be written using the JPolicy syntax.

To assist in the construction of policies such as the call limiter outlined
above, which involves counting, policy specifications can include local vari-
ables that may be updated using a limited expression language. Without
this facility, policies that need to implement counters would have to spec-
ify states to record a count total, which becomes tedious and repetitive.

13

Figure 3 shows a local variable named credits that counts how many calls
can still be made before the limit is reached. Updating of local variables,
such as incrementing one used as a counter, is enabled by the addition of
an optional clause in transition specifications. This clause, shown in braces
at the end of a transition declaration, simply lists policy variable updates
— it is not arbitrary Java code.

A further enhancement of the policy construct is that it can be param-
eterised by values, much like the way a Java class can be parameterised
by having its constructor declare a list of formal parameters. A policy’s
named parameters can be used to initialise its local variables. In Figure 3
the BoundedQueries policy has been parameterised by the call limit and
the time interval, rather than having these hard wired into the transitions.

The descriptions above outline the general form of the policy construct,
but the utility and expressiveness of policies is determined mainly by the
content of the boolean conditional expressions used to label transitions.
In Figure 3, the BoundedQueries policy illustrates the use of most of the
terms that can be referred to in condition expressions. In some cases, the

transitions.

Policy local variables Policies can declare a number of mutable local
variables, and these can be referred to in transition conditions. These
variables can be updated by assigning new values when a transition
ocCCurs.

Policy parameters The named parameters of a policy can be considered
as unchanging local variables, like final method parameters in Java.
The example policy uses the interval policy parameter in its

deny clients the ability to change the policy associated with these objects.
Clearly, if clients could replace the policies attached to service objects
then they can subvert the host’s control on service usage — thus defeating
the purpose of policy-based control. In JPolicy, we can prevent this by
restricting the ability to change an object’s policy to the service provider
only. This is achieved by using a Java interface type for the client’s view of
a service, and constraining the semantics of the policy assignment construct
so that it can only be used to change the policy of an object that is handled
through a variable of class type. Clients do not know the name of the class
that

pattern of translation for a modal method such as:

public Vector query(String searchTerm) when CAN_SEARCH {
// original method body

}
is to generate this set of three Java methods:

private Vector query_ORIGINAL(String searchTerm) {
// Notify the currentPolicy that the method has been
// invoked, then...
// execute the original method body

+

public Vector query(String searchTerm) {
// Block waiting for the object to be in the CAN_SEARCH
// abstract state, then...
return this.query_ORIGINAL(searchTerm) ;

+

public Vector query_ATTEMPT(int timeout, String searchTerm)

throws MethodUnavailableException {

// Wait at most timeout milliseconds for the object to be

// in the CAN_SEARCH abstract state, then...

if (/* object is now in the abstract state */)
return this.query_ORIGINAL (searchTerm) ;

else
throw new MethodUnavailableException();

}

We use standard Java synchronization features to implement the waiting
for abstract states — this avoids a busy wait loop by putting the calling
thread to sleep until the policy object notifies the thread that the abstract
state has changed. Since the set of abstract states is actually stored in the
policy object, the service object uses its currentPolicy instance field to

request the current status of an abstract state.

18

The first of the two generated Java wrappers has an identical signature
to that of the original method written in the JPolicy language (once the
when clause has been erased). This means that client

unknown and untrusted third parties, and therefore wish to protect their
machines from malicious, greedy or poorly-written programs. There are a
number of existing techniques that address this issue of program behaviour
control:

Sandboxing is used to control how a program can access resources in its
execution environment. The Java Security Manager architecture[14,
27] is founded on this approach, where calls to critical library

This approach has been used in Active Network systems][1, 20] to limit
the access of mobile code to resources on the network node. Work on
mobile Java code agents[17] protects services by narrowing the view of
a service interface, which prevents client code from linking to certain
methods. When a program is dynamically linked before execution,
all external dependencies are matched up with the library modules
that provide these facilities. A service host can use security policies
to control the linking process and thereby deny access to particular
services, or perhaps link against different implementations of a library
depending on the required level of functionality. Here, a limitation

code that is accessing the service. Furthermore, our design does not require
the clients to be written using the extended language — client code in plain
Java can still use policy-controlled services.

Our design involves a relatively simple and intuitive extension to the
Java programming model, whereby programmers annotate those methods
for which access control is required. The policies that control this access
are specified using the familiar model of a state machine, which enables
a concise representation of the required access control. As explained in
Section 5

Appendix: Generated Code

The following simple service class and policy (from Figure 3) are used to
demonstrate the form of the generated Java code. The JPolicy source code
is:

class SearchEngine {
Vector query(String searchTerm) when CAN_SEARCH {
return new Vector();
}
}

policy BoundedQueries (int bound, int interval) for SearchEngine {
int credits = bound;
-> some;

transition some -> some when (query) { credits = credits-1; }
transition some -> none when (credits <= 0);

transition none -> some when ((TimeService.now Y interval)==0)
{ credits = bound; }

CAN_SEARCH when { some }

From this source, the following Java code is produced by our compiler:

class SearchEngine extends java.lang.Object {
static SearchEngine.Policy defaultPolicy = new SearchEngine.Policy();
public SearchEngine.Policy currentPolicy = SearchEngine.defaultPolicy;
Vector query(String searchTerm) {
if (! (this.currentPolicy.get(0)))
synchronized (this.currentPolicy) {
while (! (this.currentPolicy.get(0)))
try { this.currentPolicy.wait(); }
catch (InterruptedException CAUGHT_EXCEPTION) { }
}
else { }
return this.query_ORIGINAL(searchTerm) ;
}
Vector query_ATTEMPT(int timeoutMillis, String searchTerm)
throws MethodUnavailableException {
if (timeoutMillis != 0 && ! (this.currentPolicy.get(0)))

25

synchronized (this.currentPolicy) {
try { this.currentPolicy.wait(timeoutMillis); }
catch (InterruptedException CAUGHT_EXCEPTION) { }
}
else { }
if ((this.currentPolicy.get(0)))
return this.query_ORIGINAL(searchTerm) ;
else throw new MethodUnavailableException();
}
private Vector query_ORIGINAL(String searchTerm) {
this.currentPolicy.query_METHOD_CALLED() ;
return new Vector();
}
static class Policy extends java.lang.Object {
public boolean get(int state) {
return true;
}
public void query_METHOD_CALLED() { }
}
}

public class BoundedQueries extends SearchEngine.Policy
implements TimeService.now_LISTENER {
private int credits;
private java.util.BitSet abstractStates = new java.util.BitSet(1);
private int concreteState;
private final SearchEngine TARGET;
private final int bound;
private final int interval;
private synchronized void DO_TRANSITION_O0() {
{
this.credits = this.credits - 1;
}
if (this.credits <= 0) {
this.DO_TRANSITION_1();
return ;
} else { %}
}
private synchronized void DO_TRANSITION_1() {
TimeService.ADD_LISTENER_FOR_now (this) ;
{1
this.concreteState = 1;
this.abstractStates.clear(0);

26

this.notifyAl1();
}
private synchronized void DO_TRANSITION_2() {
TimeService .REMOVE_LISTENER_FOR_now(this) ;
{
this.credits = this.bound;
}
this.concreteState = 0;
if (this.credits <= 0) {
this .DO_TRANSITION_1();
return ;
} else { }
this.abstractStates.set(0);
this.notifyAl1Q);
}
public synchronized void query_METHOD_CALLED() {
if (this.concreteState == 0) this.DO_TRANSITION_O(); else { }
}
public synchronized void TimeService_UPDATED_WATCHABLE now() {
if (this.concreteState == 1 &&
((TimeService.now % this.interval) == 0))
this.DO_TRANSITION_2(); else { }
+
public static BoundedQueries makePolicy(SearchEngine TARGET,
int bound,
int interval) {
return new BoundedQueries(TARGET, bound, interval);
+
public boolean get(int state) {
return this.abstractStates.get(state);
+
private BoundedQueries(SearchEngine TARGET,
int bound,
int interval) {
this.TARGET = TARGET;
this.bound = bound;
this.interval = interval;
this.credits = this.bound;
this.concreteState = 0;
this.abstractStates.set(0);
if (this.credits <= 0) this.DO_TRANSITION_1(); else { }

27

References

[1] D. S. Alexander, Paul B. Menage, W. A. Arbaugh, A. D. Keromytis,
K.G. Anagnostakis, and J. M. Smith. The Price of Safety in an Ac-
tive Network. IEEE/KICR Journal of Communications and Networks
(JCN), March 2001.

[2] Amazon. Web Bervices, 2003. Online document http://www.amazon.
com/gp/aws/landing.html.

[3] A.D. Birrell and B. J. Nelson. Implementing remote procedure calls. In
Proceedings of the ACM Bymposium on Operating Wystem Principles,
1983.

[4] Luca Cardelli. Abstractions for mobile computation. In Becure Internet
Programmang, pages 51-94, 1999.

[5] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for
the Java Modeling Language (JML). In International Conference on
Woftware Engineering Research and Practice (BERP 02), June 2002.

[6] M. Covington, M. Moyer, and M. Ahamad. Generalized role-based
access control for securing future applications. In 23rd National Infor-
mation Systems Security Conference, Baltimore, MD, October 2000.

[7] Karl Crary and Stephanie Weirich. Resource bound certification. In
Proceedings of the 27th ACM WIGPLAN-RIGAC'T Wymposium on Prin-
ciples of Programming Languages (POPL-00), pages 184-198. ACM
Press, January 2000.

[8] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-

man. The Ponder Policy Specification Language. Lecture Notes in
Computer Mcience, 1995:18-38, January 2001.

[9] Robert DeLine and Manuel Fahndrich. Enforcing High-Level protocols
in Low-Level software. In Proceedings of PLDI-01, volume 36(5) of
ACM MIGPLAN Notices, pages 59—69, June 2001.

28

[20] Paul Menage. RCANE: A Resource Controlled Framework for Active
Network Services. In Proceedings of the First International Working
Conference on Active Networks (IWAN ’99), volume 1653, pages 25—
36. Springer-Verlag, 1999.

[21] J. Gregory Morrisett, Karl Crary, Neal Glew, and David Walker.
Stack-based typed assembly language. Journal of Functional Program-
ming, January 2002.

[22] R. Pandey and B. Hashii. Providing fine-grained access control for
mobile programs through binary editing. Technical Report TR-98-08,
UC Davis, 1998.

[23] Fred B. Schneider. Enforceable security policies. Information and
Wystem Becurity, 3(1):30-50, 2000.

[24] Beverly Schwartz. Introduction to spanner: Assembly language for the
smart packets project. Technical report, BBN-TM-1220, September
1999.

[30] I. Wakeman, A. Jeffrey, T. Owen, and D. Pepper. Safetynet: A
language-based approach to programmable networks. Computer Net-
works and IMDN Wystems, 36(1):101-114, 2001.

[31] D. Wetherall, J. Guttag, and D. Tennenhouse. Ants: A toolkit for
building and dynamically deploying network protocols, 1998.

[32] WWW Consortium (W3C). Web Bervices Activity, 2003. Online spec-

ification documents

