Machine Learning (934G5)
Machine Learning
Module 934G5
Module details for 2023/24.
15 credits
FHEQ Level 7 (Masters)
Module Outline
This module will equip students with knowledge and practical experience for building and evaluating machine learning models. The module will cover multiple learning categories including supervised learning, and a variety of algorithms will be covered (both traditional approaches and those that are state of the art, e.g. advanced neural networks). The module will involve exploring the mathematics behind each algorithm as well as hands-on work (with software libraries) on real data.
Module learning outcomes
Demonstrate comprehensive understanding of key aspects of machine learning and standard methods
Show awareness of relevant issues and current challenges in machine learning
Systematically and creatively build and evaluate machine learning models
Act autonomously in preparing data appropriately to address a given problem, selecting the most suitable techniques to address the problem, and communicating valid rationale for choices made
Type | Timing | Weighting |
---|---|---|
Coursework | 100.00% | |
Coursework components. Weighted as shown below. | ||
Report | A2 Week 1 | 100.00% |
Timing
Submission deadlines may vary for different types of assignment/groups of students.
Weighting
Coursework components (if listed) total 100% of the overall coursework weighting value.
Term | Method | Duration | Week pattern |
---|---|---|---|
Spring Semester | Laboratory | 1 hour | 11111111111 |
Spring Semester | Lecture | 2 hours | 11111111111 |
How to read the week pattern
The numbers indicate the weeks of the term and how many events take place each week.
Please note that the University will use all reasonable endeavours to deliver courses and modules in accordance with the descriptions set out here. However, the University keeps its courses and modules under review with the aim of enhancing quality. Some changes may therefore be made to the form or content of courses or modules shown as part of the normal process of curriculum management.
The University reserves the right to make changes to the contents or methods of delivery of, or to discontinue, merge or combine modules, if such action is reasonably considered necessary by the University. If there are not sufficient student numbers to make a module viable, the University reserves the right to cancel such a module. If the University withdraws or discontinues a module, it will use its reasonable endeavours to provide a suitable alternative module.